
Data Replication & Caching in Data Grid :A Review

Rajshri S. Patil1, Prof.L.K.Gautam2

1Master of Engineering Scholar, 2Faculty
Information Technology Department

Sipna College of Engg and Technology
Amravati, India

Abstract- In this paper, in a data grid large quantities of data
files are produced and data replication is applied to reduce
data access time. The file replication is an effective
functionality in Data Grid that not only minimizes total access
time by replicating most accessed data file at appropriate
location but also improve data files availability in a grid
environments. The agent is deployed at each site holding the
master copies of the shared data files. we design a centralized
replication algorithm that reduces the total data file access
delay by at least half of that reduced by the optimal
replication solution. The simulation results show that the
aggregated data transfer time and the execution time for jobs
at various resources is less for agent based replica placement.

Keywords- Data Grid, Data Replication, Replication
Strategies, Candidate Site, Simulation.

I. INTRODUCTION

Data Grid is composed of set of sites and each site
contains multiple computing, storage and networking
resources. All sites are geographically connected to manage
and store large data files of size Gigabytes and terabytes
throughout the world. There are two aspects to a grid:
sharing of data and sharing of resources. Data Grid
provides an important service of data and/or data file
replication in multiple locations, so that, it helps user not
only to speed up data file access but also increases data file
availability. A community of researchers distributed
worldwide can access and share these replicated data files.
In Data Grid, each data files are initially produced and
stored in Grid sites. A Grid site may contain multiple data
files and will be replicated in appropriate location in Data
Grid to reduce access cost.
 In data grid environment a large number of similar or
equivalent resources that the grid users can select and uses
them for the execution of their applications. Examples
include human genome mapping , high energy particle
physics and astronomy, and climate change
modelling[3][5]. An important technique that speeds up the
data access in data grid systems is replication of data in
multiple locations. A Replication is an effective mechanism
to reduce file transfer time and bandwidth consumption in
Data Grids placing most accessed data at the right locations
can greatly improve the performance of data access from a
user viewpoint.

 Many time Replication is confused with caching as they
have multiple copies of file, and they have some
differences. Replication is a server side occurrence whereas

caching is related with a client. A server decides when and
where to replicate files. A client request for a file and stores
a copy of the file locally for use. Any other nearest client
can also request for that cached copy. The other advantages
of replication are that it helps in load balancing and
improve reliability by creating multiple copies of the same
data. Static replication can be used to achieve some of the
above-mentioned gains but the drawback with static
replication is that it cannot adapt to changes in user
performance. The replicas have to be manually created and
managed if one were to use static replication.
 Replication is that, it can enhance data availability and
network performance. The replication of files in Data Grid
follows the full or partial replication strategy. In full
replication all files are replicated to all resources where as
in partial replication files are replicated to some resources
in the Data Grid. There are two replication schemes
depending on the use access pattern: 1. Static Replication:
in which replicas are kept until it is deleted. 2. Dynamic
Replication: in which replicas are created and destroyed or
replaced according to variation access of the pattern or
environment behaviour. In data replication there are three
issues: 1. Replica Management- create, delete, move &
modify replica. 2. Replica Selection-selecting appropriate
replica across grid. 3. Replica Location-selecting physical
locations of several replicas of desired data.
 As the data is large, the cost of maintaining local copies
of data at each site is also expensive. Although a substantial
amount of work has been done on data replication in grid
environments, most of it has focused on the mechanism for
creating/deleting replicas. In this approach, an agent based
replica placement algorithm for making a decision to select
a candidate site for replica placement. The agent is
autonomous, self-contained software capable of making
independent decisions. In replica placement strategy
considers two important issues. First issue in choosing a
replica location is to place a replica at sites that optimize
the aggregated response time. This issue can be addressed
by placing replica in a proper location so that the time
taken for obtaining all the files required by the job is
minimized. Second issue in choosing a replica location is to
place a replica at sites that optimize the total execution time
of the jobs executed in the grid. Response time is calculated
by multiplying the number of requests at site with the
transmission time between the nearest replication site to the
requester. The sum of the response times for all sites
constitutes the aggregated response time.[3]

Rajshri S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 459-462

www.ijcsit.com 459

 In this model Scientific data, in the form of data files are
produced and stored in the Grid sites as the result of
scientific experiments, simulations, or computations. Each
Grid site executes a sequence of scientific jobs submitted
by its users. To execute each job, some scientific data as
input files are usually needed. If these files are not in the
local storage resource of the Grid site, they will be accessed
from other sites, and transferred and replicated in the local
storage of the site if necessary. Each Grid site can store
such data files subject to its storage capacity limitation. To
replicate the data files onto Grid sites with limited storage
space in order to minimize the overall file access time, for
Grid sites to finish executing their jobs. Specifically the
formulation of this problem is as design a centralized
greedy data replication algorithm, which provably gives the
total data file access time reduction at least half of that
obtained from the optimal replication algorithm.

II. LITERATURE SURVEY

 Kavita and Foster [5] discuss various replication strategies
for hierarchical data grid architecture. They proposed six
different replication strategies such as no replication, best
client, cascading, plain catching, caching plus cascading
and fast spread for three different kinds of access patterns.

1)No Replication-The base case against which we compare
the various strategies is when no replication takes place.
The entire data set is available at the root of the hierarchy
when the simulation starts. We then run the set of access
patterns and calculate the average response time and
bandwidth consumed when there is no replication involved.
This gives us the base performance and any strategy that
performs worse than this is not worth considering.

2)Best client- Each node maintains a detailed history for
each file that it contains [5] indicating the number of
requests for that file and the nodes that each request came
from. The replication strategy then works as follows: At a
given time interval each node checks to see if the number
of requests for any of its file has exceeded a threshold. If
so, the best client for that file is identified. The best client is
the one that has generated the most number of requests for
that file.

3)Cascading- The advantage of this strategy is that storage
space at all tiers is used. Another advantage is that if the
access patterns do not exhibit a high degree of temporal
locality, geographical locality is exploited by this strategy.
By not replicating at the very source of requests but at a
higher level the data is brought closer to other nodes in the
same sub-tree[5].

4)Plain catching-This combines strategy three and four The
client caches files locally. The server periodically identifies
the popular files and propagates them down the hierarchy.
Note that the clients are always located at the leaves of the
tree but any node in the hierarchy can be a server.
Specifically, a Client can act as a Server to its siblings[5].

5)Caching plus cascading- This combines strategy three
and four The client caches files locally. The server
periodically identifies the popular files and propagates
them down the hierarchy. Note that the clients are always
located at the leaves of the tree but any
node in the hierarchy can be a server. Specifically, a Client
can act as a Server to its siblings[5].
6)Fast spread- The replacement strategy we employed takes
care of both these aspects and is a combination of least
popular and the age of the file. If more than one file are
equally unpopular, the oldest file is deleted. One detail to
be noted here is that the popularity logs for all the files are
cleared periodically. Thus the dynamic aspect of changing
user patterns is captured[5].

1.1Agent Based Replica Placement in a Data Grid
Environment [3].

The author proposed an agent based replica placement
algorithm for making a replica decision to select „candidate
site‟ for replica placement to reduce access cost, network
traffic, and aggregated response time for the applications.
To select a candidate site for a replica, an agent is deployed
at each site that holds master copies of the files for which
the replicas are to be created. The agent in this approach is
autonomous, self-contained software capable of making
independent decisions. Replica placement strategy
considers two issues in choosing replica location: (1)
placing a replica at proper site so that times taken for
obtaining all files required by jobs are minimized. (2) Place
a replica at sites that optimizes total execution time of the
jobs executed in Data Grid. The author extended the
GridSim toolkit for decision making process for selection
of candidate site by implementing Replica Catalogue and
Replica Manager to maintain and control all replicas.

A software agent can be defined as a software entity which
functions continuously and autonomously in a particular
environment and which is able to carry out activities in a
flexible and intelligent manner that is responsible for
changes in the environment. The main objective of an agent
is to select a candidate site for the placement of a replica
that reduces the access cost, network traffic and aggregated
response time for the applications. To select a candidate
site for a replica, an agent is deployed at each site that
holds the master copies of the files for which replicas are to
be created.
An agent at each site makes the decision based on resource
factors that influence the data transmission time between
the sites. The factors include baud-rate between the sites,
CPU Rating, CPU Load, Site Storage Capacity and Local
Demand of the replicas at each site. The agent uses a Multi-
Dimensional Ranking (MDR) function to evaluate the
resource properties and grade with an appropriate rank. The
agent preferences are represented by a set of factor
weightings, which allow resource rank to be tailored to the
current resource characteristics. In this paper we conducted
the simulation for EU- Data Grid Tesebed1 in which master
files are initially place data CERN storage.

Rajshri S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 459-462

www.ijcsit.com 460

a) Baud-rate : This parameter represents the configuration
of the resource communication channel in the grid network.
It influences the transmission time for the file from the
replica location to the requesting site.
b) Load : This parameter represents the peak load of the
CPU in the resource. The CPU Load is generally measured
in terms of number of processes waiting in the queue. The
CPU load varies at different intervals of time. A highly
loaded resource responds slowly compared to the lightly
loaded resource.
c) Local Demand : This parameter represents the list of
files needed for the jobs execution. When all the required
files are available on the local storage, the job is scheduled
for execution. It is recommended to place a replica at a site
that has greater number of access to the replicated files.
d) CPU Rating : The processing capability of a resource’s
CPU is modeled in terms of MIPS (Million Instructions per
Second). Higher CPU rating substantially reduces the
average execution time of the submitted jobs.
e) Storage capacity : An individual storage is responsible
for storing, retrieving and deleting files. For data intensive
applications, larger storage resources are preferred as they
involve large volumes of data sets.

1.2 Data Replication in Data Intensive Scientific
Application with Performance Guarantee [1].

This paper deals with scientific data in the form of data
files are produced, stored and replicated if necessary. The
author proposed a centralized data replication algorithm
(Greedy), it places one data file into the storage space of
one site and algorithm terminates when all storage space of
sites has been replicated with data files to minimize total
access cost in the Data Grid. This algorithm that not only
has a provable theoretical performance guarantee, but can
be implemented in distributed and practical manner
Specifically, the author designed a polynomial time
centralized replication algorithm that reduces total access
cost by at least half of reduced by the optimal replication
solution. Based on this centralized algorithm a localized
distributed data caching algorithm is designed to make
intelligent caching decisions. It is composed of Centralized
Replica Catalogue (CRC): maintained at top level sites,
which is essentially a list of replica sites list for each data
file. Nearest Replica Catalogue (NRC): maintained at each
sites which contains information of replica copy and
nearest sites, and any changes made to NRC will be
updated in CRC by sending message to top level site.
Simulation results shows centralized greedy algorithm
performs quite close to optimal algorithm.

We consider a Data Grid model as shown in Fig. 1.1. A
Data Grid consists of a set of sites. There are institutional
sites,
Fig. 1.1. Data Grid model. which correspond to different
scientific institutions participating in the scientific project.
There is one top level site, which is the centralized
management entity in the entire Data Grid environment,
and its major role is to manage the Centralized Replica
Catalogue (CRC). CRC provides location information

about each data file and its replicas, and it is essentially a
mapping between each data file and all the institutional
sites where the data is replicated [8]. Each site (top level
site or institutional site) may contain multiple grid
resources. A grid resource could be either a computing
resource, which allows users to submit and execute jobs, or
a storage resource, which allows users to store data files.3
We assume that each site has both computing and storage
capacities, and that within each site, the bandwidth is high
enough that the communication delay inside the site is
negligible.For the data file replication problem addressed in
this article, there are multiple data files, and each data file
is produced by its source site (the top level site or the
institutional site may act as a source site for more than one
data files). Each Grid site has limited storage capacity and
can cache/store multiple data files subject to its storage
capacity constraint.[1]

Top Level Site

Institutional Site

Grid Resource

13

Figure:1.1 shows Top Level site, Institutional site, Grid
Resource in Data Grid Model in Data Replication
Environment.

CONCLUSION
The data file replication performance depends on a

variety of factors such as replica selection, placement,
network traffic and bandwidth. This paper focuses on data
file replication algorithms by following different file
replication strategies using simulation environments. Well
suited replication strategy can improve Data Grid
performance depending on data file access situation.

Replication is an effective mechanism to reduce file
transfer and bandwidth consumption in data grid placing
most accessed data at the right location can greatly improve
the performance of data access from a user’s perspective.

The main objective of an agent is to select a candidate
site for the placement of a replica that reduces access cost,
network traffic and aggregated response time for
application.

Centralized data replication algorithm reduces the file
access cost & increases data availability.

Rajshri S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 459-462

www.ijcsit.com 461

REFERENCES
[1] Dharma Teja Nukarapu,Bin Tang, Liqiang Wang and Shiyong Lu,

“Data Replication in Data Intensive Scientific Applications with
Performance Guarantee”, IEEE Transaction on Parallel and
Distributed Systems, Vol. 22, No 8, Aug 2011.

[2] D. G. Cameron, R. Carvavajal-Schiaffino, A. P. Millar, C.
Nicholson, K. Stockinger and F. Zini, ”Analysis of Scheduling and
Replica Optimisation Strategies for Data Grids using OPtorSim
”.

[3] Ms. Shaik Naseer and Dr. K. V. Madhu Murthy, ”Agent Based
Replica Placement in a Data Grid Environment”, First Int‟l
Conference on Computational Intelligence, Communication
Systems and Networks 2009.

[4] Mahesh Mayura and Ketan Shah,”A Review on File Replication
Algorithms”, journal of Sci. & Tech. Mgt. vol 3(2), july 2011.

[5] Kavita Rananathan and Ian Foster, “Identifying Dynamic
Replication Strategies for High Performance Data Grid”, Proc.
Second Int‟l Workshop Grid Computing (Grid), 2001.

[6] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, and
D. Thain, “The Quest for Scalable Support of Data Intensive
Workloads in Distributed Systems,” Proc. ACM Int’l Symp.
High Performance Distributed Computing (HPDC), 2009.

[7] The European Data Grid Project. Homepage
http://eudatagrid.web.cern.ch/eu-datagrid,2005.

[8] I. Raicu, Y. Zhao, I. Foster, and A. Szalay, “Accelerating Large
Scale Data Exploration through Data Diffusion,” Proc. Int’l
Workshop Data-Aware Distributed Computing (DADC), 2008.

Rajshri S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 459-462

www.ijcsit.com 462

